Sustainable Fault Diagnosis of Imbalanced Text Mining for CTCS-3 Data Preprocessing
نویسندگان
چکیده
At present, the method for fault diagnosis and maintenance of CTCS-3 (Chinese Train Control System Level 3) electronic equipment relies too heavily on expert knowledge. Moreover, use historical data is not valued. This paper proposes a sustainable model based imbalanced text mining. First, to process from field recorded in natural language, language processing technology used extract feature words. Then, term frequency-inverse document frequency transform words extracted database into vectors. It worth noting that imbalance samples affects accuracy this model. To solve problem, we borderline-synthetic minority over-sampling technique step predicting train components, also backpropagation neural network proposed naive Bayesian which commonly as classification model, compare prediction these two algorithms. The experimental results perform well, proves using can further assist engineers complete timely repair work. research has played very important role technical support intelligent dispatching command, will play positive automatic operation urban rail transit under prevention control new coronavirus.
منابع مشابه
Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملon mining fuzzy classification rules for imbalanced data
fuzzy rule-based classification system (frbcs) is a popular machine learning technique for classification purposes. one of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. however many cases the minority classes are more important than the majority ones. in this paper, we have extended ...
متن کاملNetwork Fault Diagnosis Using Data Mining Classifiers
Mobile networks are under more pressure than ever before because of the increasing number of smartphone users and the number of people relying on mobile data networks. With larger numbers of users, the issue of service quality has become more important for network operators. Identifying faults in mobile networks that reduce the quality of service must be found within minutes so that problems ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2021
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su13042155